Part Number Hot Search : 
2SC5763 BU9831 AT88S 03800 BYG20 M9514SE2 AF9435PS MAXIM
Product Description
Full Text Search
 

To Download V23990-P546-A39-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p546-*3*-pm flowpim 0 600v/30a vincotech clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives v23990-p546-a38-pm V23990-P546-A39-PM v23990-p546-c38-pm v23990-p546-c39-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 46 t h =80c 37 t c =80c 59 maximum junction temperature t j max 150 c inverter transistor t h =80c 27 t c =80c 36 t h =80c 54 t c =80c 82 t sc t j 150c 6 s v cc v ge =15v 360 v 50hz half sine wave t p =10ms 90 20 90 power dissipation per diode i 2 t w maximum ratings i fav a 2 s i fsm condition input rectifier diode a a features flowpim 0 housing schematic dc forward current surge forward current t j =25c 310 types i2t-value 250 t j =t j max t j =t j max p tot v t j =t j max dc collector current power dissipation per igbt maximum junction temperature short circuit ratings gate-emitter peak voltage repetitive peak collector current turn off safe operating area collector-emitter break down voltage a t j =t j max a 600 a t p limited by t j max w v ge i cpulse t j max p tot v ce i c v c 175 target applications vce 600v, tj top max 17mm housing 12mm housing copyright vincotech 1 revision: 4
v23990-p546-*3*-pm t j =25c, unless otherwise specified parameter symb ol value unit maximum ratings condition inverter diode t h =80c 25 t c =8 0c 32 t h =8 0c 40 t c = 8 0c 60 br ake transistor t h =80c 21 t c =8 0c 27 t h =8 0c 41 t c =8 0c 63 t sc t j 1 50c 6 s v cc v ge =15v 360 v b rake diode t h =80c 18 t c = 8 0c 25 t h =8 0c 31 t c =8 0c 47 th ermal properties ins ulation properties v is t=2s dc vol tage 4000 v min 12,7 mm min 12,7 mm cti >200 c v c t j =t j max 60 0 1 75 vce 600v, tj top max w t p limited by t j max t j =t j max 20 6 00 a i frm p tot a v t j =t j max a v c t j m a x i f v rrm dc collector current ma x imum junction temperature short circuit ratings t j max i cpuls gate-emitter peak voltage tur n off safe operating area p tot power dissipation per igbt a 60 a 60 co llector-emitter break down voltage repetitive peak collector current repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage i frm v rrm dc forward current i f repetitive peak forward current pe a k repetitive reverse voltage v 600 w 175 i c v ge v ce maximum junction temperature t j max 175 t j = t j max t p limited by t j max dc for w ard current w a a t p limited by t j max 40 t j = t j m ax pow er dissipation per diode p tot t j =t j max c sto rage temperature t stg -40+125 c -4 0+(tjmax - 25) comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clea rance 60 copyright vincotech 2 revision: 4
v23990-p546-*3*-pm parameter symb ol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,89 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,67 1,9 tj=150c 1,90 tj=25c 0,0016 tj=150c tj=25c 300 tj=150c tj=25c 17 tj=150c 18 tj=25c 16 tj=150c 18 tj=25c 156 tj=150c 172 tj=25c 88 tj=150c 101 tj=25c 0,52 tj=150c 0,71 tj=25c 0,72 tj=150c 0,90 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,76 k/w tj=25c 1,25 1,64 1,95 tj=150c 1,66 tj=25c 25 tj=150c 28 tj=25c 176 tj=150c 256 tj=25c 1,36 tj=150c 2,45 di(rec)max tj=25c 1521 /dt tj=150c 932 tj=25c 0,27 tj=150c 0,51 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,40 k/w 167 1630 tj=25c 50 108 none v 30 15 0 t r t d(off) v ce =v ge erec q gate c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance out put capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value co n ditions characteristic values forward voltage threshol d voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t inp ut rectifier diode v v m ma 30 30 30 rever se current i r c f=1m h z rgon=8 0 20 15 rgoff=4 15 30 30 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 480 30 50 0,00043 300 300 1500 rgon=8 mws v a nc na v ma mws ns pf ns a/s tj=25c copyright vincotech 3 revision: 4
v23990-p546-*3*-pm parameter symb ol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value con ditions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1 1,58 2,2 tj=150c 1,76 tj=25c 0,0011 tj=150c tj=25c 300 tj=150c none tj=25c 15 tj=150c 14 tj=25c 12 tj=150c 15 tj=25c 197 tj=150c 220 tj=25c 100 tj=150c 119 tj=25c 0,31 tj=150c 0,43 tj=25c 0,53 tj=150c 0,67 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,30 k/w tj=25c 1,25 1,83 1,95 tj=150c 1,76 tj=25c 27 tj=150c tj=25c 18 tj=150c 21 tj=25c 31 tj=150c 197 tj=25c 0,39 tj=150c 0,39 di(rec)max tj=25c 1762 /dt tj=150c 927 tj=25c 0,05 tj=150c 0,25 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3,04 k/w a tj=25c vincotech ntc reference b-value tol. 3% k b (25/100) tj=25c 4000 k tj=25 c b-value b (25/50) tol. 3% v v a ns a/ s a mws c v 22000 5 -5 % tj=25c tj=25c 3,5 210 120 32 collector-emitter cut-off incl diode gate emitter threshold voltage 20 0,00029 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gat e charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse ri se time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak r everse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor nc brake transistor mw/k power dissipation p mw rated resistance r power dissipation constant deviation of r100 ? r/r r100=1486 i ges 0 15 15 480 r gon=16 rgoff=8 v ce =v ge f=1mhz 0 15 0 20 20 ma na ns pf mw s rgon=16 v f i r i rrm diode forward voltage reverse leakage current rgon=16 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor 20 300 20 20 600 300 300 25 tj =25c tc=100c tc=100c tj=25c 71 1100 copyright vincotech 4 revision: 4
v23990-p546-*3*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 outp ut inverter igbt figure 4 output inverter fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a func tion of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v out put inverter typical output characteristics 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 0 2 4 6 8 10 12 14 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p546-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 8 i c = 30 a r go ff = 4 figure 7 outp ut inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 8 i c = 30 a out put inverter e on high t e off high t e on low t e off low t 0,0 0, 5 1 ,0 1,5 2,0 0 10 20 30 40 50 60 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0, 5 1,0 1,5 2,0 0 20 40 60 80 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,1 0 ,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0, 1 0,2 0,3 0,4 0,5 0,6 0 20 40 60 80 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 rev i sion: 4
v23990-p546-*3*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 8 i c = 30 a r go ff = 4 figure 11 outp ut inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v r = 300 v v ge = 15 v i f = 3 0 a r g on = 8 v ge = 15 v o utput inverter t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 10 20 30 40 50 60 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,1 0 ,2 0,3 0,4 0 20 40 60 80 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 20 40 60 80 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t j = 25c t rr 0,0 0,1 0 ,2 0,3 0,4 0 10 20 30 40 50 60 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 rev i sion: 4
v23990-p546-*3*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v r = 300 v v ge = 15 v i f = 3 0 a r g on = 8 v ge = 15 v fi gure 15 outp ut inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v r = 300 v v ge = 15 v i f = 3 0 a r g on = 8 v ge = 15 v o utput inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 10 20 3 0 40 0 20 40 60 80 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0, 5 1 ,0 1,5 2,0 2,5 3,0 0 20 40 60 80 r g on ( w ) q rr ( m c) i rrm t j = t jmax -25c i rrm t j = 25c 0 5 10 15 2 0 25 30 0 10 20 30 40 50 60 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0, 5 1 ,0 1,5 2,0 2,5 3,0 0 10 20 30 40 50 60 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 rev i sion: 4
v23990-p546-*3*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt ,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v r = 300 v v ge = 15 v i f = 3 0 a r g on = 8 v ge = 15 v fi gure 19 outp ut inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,76 k/w 1,43 r thjh = 2,40 k/w 1,94 igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,06 4,6e+00 0,05 3,7e+00 0,07 4,6e+00 0,06 3,7e+00 0,22 5,4e-01 0,17 4,3e-01 0,27 4,8e-01 0,22 3,9e-01 0,94 1,0e-01 0,76 8,4e-02 1,13 8,5e-02 0,92 6,9e-02 0,34 2,0e-02 0,27 1,6e-02 0,52 2,0e-02 0,42 1,6e-02 0,11 3,1e-03 0,09 2,5e-03 0,20 2,8e-03 0,16 2,3e-03 0,11 3,0e-04 0,09 2,4e-04 0,21 3,3e-04 0,17 2,7e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 400 800 1200 1600 2000 2400 0 20 40 60 80 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di r ec /dt 0 400 800 1200 1600 2000 0 10 20 30 40 50 60 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /d t 25 / 125 25 / 125 copyright vincotech 9 rev i sion: 4
v23990-p546-*3*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 1 75 c t j = 175 c v ge = 15 v fi gure 23 outp ut inverter fwd figure 24 output inverter fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 1 75 c t j = 175 c output inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p546-*3*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = s ingle pulse i c = 30 a t h = 8 0 oc v ge = 15 v t j = t jmax oc figure 27 outp ut inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical shor t circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 600 v v c e 600 v t j 1 75 oc t j = 175 oc o utput inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100 us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 40 80 120 160 200 240 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 100 200 300 400 500 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 4
v23990-p546-*3*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t j max -25 oc u cc m inus =u ccplus switching mode : 3phase spwm 0 10 20 30 40 50 60 70 80 0 100 200 300 400 500 600 700 v ce (v) i c (a) i cmax v ce max i c mo dule i c chip copyright vincotech 12 revision: 4
v23990-p546-*3*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typic al output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 brak e igbt figure 4 brake fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a func tion of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v br ake 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p546-*3*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a r go ff = 8 figure 7 brak e fwd figure 8 brake fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a br ake e rec t j = t jmax - 25c e rec t j = 25c 0,0 0,1 0 ,2 0,3 0,4 0 10 20 30 40 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e re c 0,0 0,1 0 ,2 0,3 0,4 0 30 60 90 120 150 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,0 0,3 0 ,6 0,9 1,2 1,5 0 10 20 30 40 i c (a) e (mws) e off t j = t j max -25c e o n e o n e off t j = 25c 0,0 0, 3 0 ,6 0,9 1,2 1,5 0 30 60 90 120 150 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 14 rev i sion: 4
v23990-p546-*3*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 30 0 v v ce = 300 v v ge = 15 v v ge = 15 v r go n = 16 i c = 20 a r go ff = 8 figure 11 brak e igbt figure 12 brake fwd igbt transient thermal impedance fwd t ransient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2,3 0 k/w r thjh = 0,60 k/w r thjh = 3,04 k/w r thjh = 1,27 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 10 20 30 40 i c (a) t ( m s) t doff t f t don t r 0,00 0,0 1 0,10 1,00 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 125 25 / 125 copyright vincotech 15 rev i sion: 4
v23990-p546-*3*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 1 75 oc t j = 175 oc v g e = 15 v fi gure 15 brak e fwd figure 16 brake fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 1 75 oc t j = 175 oc b rake 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p546-*3*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,89 k/w figure 3 rect ifier diode figure 4 rectifier diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 1 50 oc t j = 150 oc inp ut rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p546-*3*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic typic al ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 40 0 0 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/ 25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p546-*3*-pm t j 125 c r gon 16  r goff 8  figure 1 outp ut inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t e on = integrating time for e on ) v ge (0%) = 0 v v ge ( 0%) = 0 v v ge ( 100%) = 15 v v ge (100%) = 15 v v c ( 100%) = 300 v v c (100%) = 300 v i c (100%) = 30 a i c ( 100%) = 30 a t do ff = 0,17 s t d on = 0,02 s t e off = 0,44 s t e on = 0,18 s fi gure 3 outp ut inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c ( 100%) = 300 v v c (100%) = 300 v i c (100%) = 30 a i c ( 100%) = 30 a t f = 0 ,10 s t r = 0,02 s s witching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 0 50 10 0 150 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 10 0 150 200 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t e o n v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 7 5 100 125 0 0,1 0,2 0,3 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 10 0 150 200 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 19 re v ision: 4
v23990-p546-*3*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p o f f (100%) = 8,98 kw p on (100%) = 8,98 kw e off (100%) = 0,90 mj e on (100%) = 0,71 mj t eoff = 0,44 s t e on = 0,18 s fi gure 7 outp ut inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-of f switching waveforms & definition of t rr v g e off = 0 v v d (1 00%) = 300 v v g eon = 15 v i d ( 100%) = 30 a v c ( 100%) = 300 v i r rm (100%) = 28 a i c ( 100%) = 30 a t rr = 0,26 s q g = 230, 15 nc switching definitions output inverter i c 1% v ge 90% -25 0 25 5 0 7 5 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e of f t eoff v ce 3% v ge 10% -50 0 50 10 0 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -100 -50 0 50 100 150 200 250 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 - 40 0 40 80 120 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted copyright vincotech 20 re v ision: 4
v23990-p546-*3*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t e rec = integrating time for e rec ) i d ( 100%) = 30 a p r e c (100%) = 8,98 kw q rr (100%) = 2,45 c e r ec (100%) = 0,51 mj t qrr = 0,56 s t e rec = 0,56 s s witching definitions output inverter t qrr -100 -5 0 0 5 0 100 150 2,9 3,1 3,3 3,5 3,7 % i d q r r tim e( us) -25 0 25 50 75 100 125 3 3,2 3,4 3,6 3,8 time(us) % p rec e rec t erec copyright vincotech 2 1 re v ision: 4
v23990-p546-*3*-pm in datamatrix as in packaging barcode as p546-a38 p546-a38 p546-a39 p546-a39 p546-c38 p546-c38 p546-c39 p546-c39 x y 25.5 2.7 25.5 0 22.8 0 20.1 0 16.2 0 13.5 0 10.8 0 8.1 0 5.4 0 2.7 0 0 0 0 19.8 0 22.5 7.5 19.8 7.5 22.5 15 19.8 15 22.5 22.8 22.5 25.5 22.5 33.5 22.5 33.5 15 33.5 7.5 33.5 0 v23990-p546-c38-pm v23990-p546-c39-pm 22 23 18 19 20 21 14 15 8 9 16 17 10 11 12 13 2 3 4 5 6 7 1 v23990-p546-a38-pm V23990-P546-A39-PM outline without thermal paste 17mm 2 clips housing ordering code pinout ordering code and marking - features - outline - pinout ordering code & marking version without thermal paste 12mm 2 clips housing without thermal paste 17mm 2 clips housing without thermal paste 12mm 2 clips housing pin table pin copyright vincotech 22 revision: 4
v23990-p546-*3*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P546-A39-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X